Gabor frames by sampling and periodization

نویسنده

  • Peter L. Søndergaard
چکیده

By sampling the window of a Gabor frame for L(R) belonging to Feichtinger’s algebra, S0(R), one obtains a Gabor frame for l(Z). In this article we present a survey of results by R. Orr and A.J.E.M. Janssen and extend their ideas to cover interrelations among Gabor frames for the four spaces L(R), l(Z), L([0, L]) and C. Some new results about general dual windows with respect to sampling and periodization are presented as well. This theory is used to show a new result of the Kaiblinger type to construct an approximation to the canonical dual window of a Gabor frame for L(R).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image processing by alternate dual Gabor frames

‎We present an application of the dual Gabor frames to image‎ ‎processing‎. ‎Our algorithm is based on finding some dual Gabor‎ ‎frame generators which reconstructs accurately the elements of the‎ ‎underlying Hilbert space‎. ‎The advantages of these duals‎ ‎constructed by a polynomial of Gabor frame generators are compared‎ ‎with their canonical dual‎.

متن کامل

Numerical Computations Using Gabor Frames for Periodic Spaces

This thesis presents Gabor frames for L2(T) and for the space of periodic sequences Cp , as being analogue to Fourier series and the discrete Fourier transform. Results from the standard theory of Gabor frames for L2(R) are transferred to the periodic setting. This includes results about sampling Gabor systems and existence of Gabor frames. The interrelation of Gabor frames for the continuous s...

متن کامل

O ct 2 01 7 SAMPLING THEOREMS FOR SHIFT - INVARIANT SPACES , GABOR FRAMES , AND TOTALLY POSITIVE FUNCTIONS

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

Sampling Theorems for Shift-invariant Spaces, Gabor Frames, and Totally Positive Functions

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

Sub-Nyquist sampling for short pulses with Gabor frames

For analog signals comprised of several, possibly overlapping, finite duration pulses with unknown shapes and time positions, an efficient sub-Nyquist sampling systems is based on Gabor frames. To improve the realizability of this sampling system, we present alternative method for the case that Gabor windows are high order exponential reproducing windows. Then, the time translation element coul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2007